ELECTRICAL CONDUCTIVITY OF AN ARGON PLASMA
IN A STABILIZED ARC

V. A. Baturin

A method is described for determining the electrical conductivity o as a function of the
temperature T from measurements in extended plasma sources of radial symmetry. The
accuracy and features of the method are analyzed in numerical examples. Measurements
made for a stabilized argon arc and the ¢(T) dependence determined from them are the
argon plasma are reported. The results are analyzed and compared with theory and other
experiments,

Study of many processes occuring in a plasma requires knowledge of the dependence of the electrical
conductivity o on the temperature T. Theoretical ¢(T) dependences based on various equations for the
conductivity and on various data for the cross sections for collisions between plasma particles yield very
different results [1], so reliable experimental methods for determining the conductivity are important.

It is difficult to determine o(T) because an artificially produced plasma is generally nonisothermal
throughout its volume. The quantities and effects associated with the conductivity here are of an integral
nature, so it is difficult to interpret experimental results. Steady-state plasmas at 10,000-15,000°K and
above are usually produced by electric arcs. The methods available for determining ¢(T) from arc measure-
ments have several disadvantages.

The method based on measurement of the average atomic cross sections Qa [2, 3] is based on theo-
retical equations for the conductivity, requires knowledge of the cross sections for interactions between
electrons and ions, and does not take into account the temperature dependence of @ . A method independent
of this theory is described in [4], but the basic assumptions behind this method limit its application. For
example, this method cannot in principle be used for the case of arcs in intense gas flows, in arcs with an
optically opaque plasma, and in certain other particular cases. Two other methods [5, 6] require measure-
ment of the arc parameters under quite a large variety of conditions with a large temperature range at the
column axis. However, it is not at all possible to stabilize a plasma temperature over a wide range in all
arcs. In addition, these methods are sensitive to errors in the measurement of the arc parameters and
have certain other disadvantages.

_1. We assume a plasma occupying a rather large volume whose temperature and other properties
(the arc column, the plasma stream, etc.) are readily symmetric about the longitudinal z axis. An electric
field acts on the plasma along the z direction, causing a current I; some potential distribution V(z) is set
up. The electric field intensity E = dV/dz is constant in z = const cross sections. The plasma is at ther-
modynamic equilibrium, so there is a single-valued dependence betweenc and T for it. Then for a given
cross section z = const with a radial temperature distribution T(r), we can write Ohm's law as

R
%:G::%\:SG[T(r)]rdr (1.1)
o

where G is the integral conductivity over the cross section, and R is the radius of the outer plasma boundary
in this cross section.
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We assume that we have experimentally determined the integral conductivities G; = L;/E; and tem-~
perature profiles Ti(r) for some number N of different states (conditions) of the plasma in the cross sec~
tions z = const (i = 1, 2, ..., N). We are to determine ¢ as a function of T from these data in the range
T =< max T(0) [max T(0) is the greatest of the axial temperatures Ti(O), i=1,2,.., Nl

We seek the o(T) depenence as some analytic function o°(T), whose form may be chosen on the basis
of the following, quite obvious counsiderations.

1. For any maximum plasma temperature Tmax there is always a temperature Tg < Tmax below
which we have o(T) < o(Ty,,,) oT, approximately,

o(I) = o’(I) =0 (T <1y (1.2)
The value of Ty may be called the "relative thermal boundary of the conductivity,"

2. In any temperature range (T4, T;) which is not too large, the function ¢(T), which is obviously
continuous and smooth, may be described quite accurately by a polynominal of the form

3

s(h=a’ (N = Na (T —T)f (LT LT (1.3)
k=0

where aj (k= 0.1, ...,m)are certain coefficients.

The zeroth-order function ¢,°(T) and the polynominal ¢;°(T) may be represented as a single function

0°(T) which is continuous for all T< T ax’ For this purpose we must assume T, =T, Ty = Tmax’ a,=0
and, at least, a; = 0, Then we can write ¢(T) dependence in the interval T = max T(0) in the form
o°(T) = 0°(T) = 0 (I' < 1)
. . S i (1.4)
(7)== (I) = D\, (T —To) (To < T < max T (0))

k=l

where I = 2. The value of T, along with the coefficients a) (k =1, + 1, ..., m) must be treated here as a
free parameter of the fuaction o°(T). Using (1.4), we express the radial conductivity distributions in terms
of the known temperature profiles:

73

o, (N =s[T,(N=a[T;(N] =
k
S, (r)=0 (rOi<r<Ri)

@ (T () —TolF (0=r <L) (1.5)
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TABLE 1

Version T (0), °K G*, mho- N* | m |[<Ac*),mho* | <8+%)-100%
cm cm
1 9220-+13470 | 1.80+12.95 | 10 2 1.16 2.7
2 922013470 | 1.80+12.95 | 10 3 0.78 1.8
3 922013470 | 1.80+12.95 | 10 4 0.52 1.2
4 9220~+-13470 | 1.80-+12.95 | 10 5 0.20 0.5
5 1029013470 | 3.25+-12,95 8 4 0.54 1.2
6 994013470 | 2.61+12.95 5 4 0.52 1.2
7 922013470 | 1.80~-12.95 4 4 0.51 1.2
8 13500 3.72-+8.68 4 4 0.56 1.3

where Ry is the radius of the inner plasma boundary in the i-th state, and ry; are the r values correspounding

to the temperature T = T, (i = 1, 2, ..., N). Substituting (1.5) into (1.1), we find the integral conductivities
i .
G = D, .
Gl G1. él a,k ¥i (1.6)
=20 Q Ti()— Tl rdr  (i=1,2,..., N k=1L 141,..., m) (1.7)
0

We seek the optimum values of the parameters ay k=1,1+1, ..., m)and T, from the condition for
the best fit of the quantities

R’L
G = 2x Ss (73 (") rdr
0

to the actual integral conductivities

5

Cotrionrar

0

Gi=2ﬂ5

for a set of all N states (i=1, 2, ..., N). According to the method of least squares, the best fit of Gi° and
Gi occurs when

y N
s ZZ (G;— G)? = min, or - Z (

=1 =1

(1.8)

m
2 E ht) = min

This condition will evidently hold when all the partial derivatives of S
with respect to the free parameter vanish:
m

' N
. as _ @ .
7 Ba; T[;(Gl = l“kq)m)] 0

(G=4L1I+1...,m (1.9)

il

S/ dTy =0 (1.10)

Expanding the products in (1.9), we find m — + 1 equations

<
Pl qu).'ll

S, Z% 5=

k=l i=1

(=t Lt-+1,...,m) (1.11)

which are linear with respect to the m —[ + 1 unkoowns ¢, k=17,7+1,
..., m) at fixed values of Ty. When T, is taken into account, the total
number of unknowns is m — /+2. Equation (1.10) should be considered
the missing equation. Under the condition m — + 2 = N, the optimum
parameters a, and T, may be determined by means of Egs. (1.11) and
(1.10) in the following manner,

[i.e., the region below the small-
1, 2, ..., N], a series of

Within the region T < min T(0)
est of all the axial temperatures Ti(O), i=
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values Ty = Ty', Ty"', Ty'"", ..., is specified; then the quantities ®y; = Pii', Y’y P''’s . 171, 2, w00, N}
k=1,1+1, ..., m)are calculated from Eq. (1.7}, and systems of equations of the form (1.11) are calculated
from these quaatities. The solutions of these equations yield the coefficients a = ai' ak", ap’'"y e then

the corresponding values S= 8', S'', §'"', ..., are calculated from Eq. (1.8). This yields the S(T,) dependence
in the form of individual points S'(Ty"), 8'"(Ty'", S""'(T4'""), ... . The optimum value of Ty corresponding

to Eq. (1.10) is determined from the minimum of the function S(T;). Solution of system (1.11) written for

this T, value yields the unknown coefficients @y k=1[,1+1,.., m). Inthis same manner, the function

¢0°(T) in the form (1.4) is determined which corresponds to condition (1.8) and which apparently best describes
(for the given [ and m) the o(T) dependeunce.

All the numerical calculations (including the optimization of solutions for T;) were programed for an
M-20 computer. The computer time required for the complete calculation is 5~10 min, depending primarily
on the step AT,.

2. The fuanction ¢°(T) = ¢(T) is related in a very complicated manner to the initial values G; and Tj(r)
so it is not possible to carry out an accurate analysis of the accuracy of the method. Through the use of a
computer, however, the method can be easily checked for particular examples. For this purpose some
function o¥T) dependence, and arbitrary integral conductivities

Rl
Gr=2n Y S TE @I =12, MY
0

are calculated for a certain number N* of specified temperature profiles Ty *(r).

Treatment of the quantities G;*and Ti*(r) determined in this manner yields the best fit function ¢°*(T)
in the form (1.4). Since this function reproduces the original o¢*(T) dependence, one can accurately evaluate
the accuracy and reliability of the method.

In a numerical check in this manner, we adopted as the arbitrary function ¢*(T) the theoretical ¢(T)
dependence for argon calculated from the equations of [3]. The G;* values were calculated with an account
of the ¢ *(T) function chosen for two different groups of Ty*(r) temperature curves. The first of them is a
set of real temperature profiles in an argon-arc column with a range T*0) = 9220~13,470°K (see Sec. 3 and
Fig. 8). The second group of Ti*(r) curves shown in Fig. 1 were calculated from

T# (r) = T% (0) — [T% (0) — T,*] r®R* ™™

Here TW* is the nominal temperature of the outer boundary of the plasma (at the wall). The curves
in Fig. 1 correspond to n = 2, 3, 4, 5 (at constant T*©0) = 13,500°K, Ty* = 500°K, and R* = 0.25 cm). In
addition to varying the nature of the Ti*(r) curves in these calculations, we varied the m values (at [ =
const = 2) and the number of states N*, The fit of ¢*(T) to o X(T) was characterized by the averaged integral
absolute and relative deviations, <As*; and <8 , respectively, calculated from

Ty

1
Ac¥y ?
B*y = <<Gi> .M =5 % s* (T) dT (2.2)

over the temperature range 8000-13,500°K,
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TABLE 2

» |d, mm 1,a |E,V/cm |G, mho'cm Iy @ IpI L 1005
1 5 33.2 7.4 4.49 31.8 —4.2
2 5 48.9 8.3 5.89 49.5 +1.2
3 5 70.9 9.9 7.16 73.5 +3.7
4 5 137 13.5 10.15 142 .4 +3.9
5 5 165.5 14.8 11.18 159.6 —3.6
6 6 79 8.3 9.5 77 —2.5
7 6 110 9.7 11.34 102 —17.3
8 8 201 12.9 15.6 184 —8.5
9 8 40 5.2 7.7 37.5 —6.2
10 8 80 6.0 13.4 76 —5.0
11 8 200 9.2 21,7 l 206 +3.0

Table 1 shown the results of eight different versions of the calculation. Versions 1-4 correspond
to m = 2~5, respectively, and the data for the ten conventional states with temperature distributions T;Xr)
according to Fig. 3. In versions 5-7, the number of states N* was changed (from four {o eight) at the same
m =4. In the eighth version, the function ¢ *°(T) was determined for m = 4 from the data of four conven-
tional states with temperature profiles Ti*(r) having identical T*(0) = 13,500°K (Fig. 1). The G;* values
for the conventional states used are showun in Table 1.

Analysis of the data in the table yields the following conclusions.

1. Versions 1-4 show that the accuracy with which the o*(T) dependence is reproduced by ¢*°(T)
increases with increasing m. When exact G; and Ti(r) values are available, one can apparently achieve an
arbitrarily accurate determination of ¢(T) in form (14) by increasing m withl = const, Since, however,
Gj and Tj(r) may be determined experimentally within 1% or a few percent, it is in fact sufficient to use
m = 3-5 (for [ = 2).

2. It follows from versions 3, 5, 6, 7 that for constant Z and m the fit of ¢™(T) to ¢ *(T) is essentially
independent of N* (for N*= m — [ + 2). This means that in determining ¢(T) by this method it is in principle
sufficieunt to have available G; and T;(r) for the minimum number of states N in=m—I1+ 2.8, Npyjp =3
for I = 2 and m = 3). On the other hand, the number of states has no upper limit. If there is a sufficiently
strong inequality N > m — 1 + 2, it follows from Egs. (1.11) that an averaging of the random measurement
errors in Gj and T;(r) will automatically occur in the process of determining the ¢(T) dependence.

3. Use of the T;* curves with identical T*0) = 13,500°K yields essentially the same result as in the
case of the Tj*(r) curves with an interval T*(0) = 9220 —13,470°K (cf. version 7 and 8). This implies that
the temperature interval at the axis is of no fundamental importance in this procedure.

3. The method described above was used to determine the electrical conductivity of an argon plasma
at atmospheric pressure and at temperatures up to about 13,500°K. The experiments were carried out in
an arc stabilized by copper diaphragms [7]. The stabilizing arc channel had a diameter of d =5 mm and
consisted of several cooled sections (each section was composed of several diaphragms). The cathode and
anode parts and the diaphragms near the electrodes were also cooled individually, The number of sections
in a channel ranged from two to five, and the total arc length ranged from 4.86 to 12.3 cm. In one of several
diaphragms there was a window for optical measurements transverse to the arc columu. The test gas
(argon) was supplied to the arc from the cathode direction at a constant rate of r = 0.2 g/sec.

The current I, the voltage U across the electrodes, the power W,; transferred from the plasma to the
walls in n individual arc regions (i = 1, 2, ..., n), the electric field intensity E and the temperature distri-
bution T(r) in the column were measured for I in the range 5~190 a.

The power W_, absorbed by the walls was determined by a calorimetric method. Since the argon flow
was so slight, the energy carried away from the arc with the gas was negligible [8], and we would expect

A Wy=W =10 (3.1)

=1

to hold, where W is the arc power. The ‘experimental I, U, and Wwi(i =1, 2, ..., n) values satisfied Eq.
(3.1) within 1-1.5%; this is evidence that the measuremeunts were reliable.
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: . The field intensity E was determined by two different methods. In the

Loa | /| first method, E was found from a treatment of the U(I) characteristics measured
160 w / for various arc lengths . These characteristics were used to plot the U(l)
' dependences (for the I = const values of interest), which were supposed to be
20 | linear if the arc column was cylindrically symmetric and had constant condi-
"/ ! tions at electrodes for all [. In this case, the slope of the U({) curves yield
/ p the field intensity in the column.
. -
# / # o \] In the second method, we have
“ // ZVl—IE oo E=—T% (3.2)
. AT = » =TT .
& b v
> ////”-—_1
2 oY Mrﬂ, “C  from the power balance for a cylindrical arc columu. Here Wy, is the power

absorbed by the walls over the measuring length Iy of the channel.

Fig. 6 In the are studied, the column was uniform along its length, and Egs. (3.2)

were essentially satisfiedat argon flow rates of g = 0.05 g/sec [8], so the use of
these methods in the case g = 0.02 g/sec is completely justified.

To determine E by the first method, we used the U(I) characteristics measured at [ = 4.86, 5.60, 8.13,
and 12,3 cm (curves 1-4, respectively, in Fig. 2). The U(l) dependences plotted from these characteristics
for various I = const values turned out to be linear. The field intensities in the columua found from the
slopes of these depeundences turned out to be described by the smooth curve 5 also shown in Fig. 2, Here
the points show the E x 10 values found by the second method. Using (3.2), through the use of calori-
metric data in various regions (sections) of the stabilizing channel. The two methods agree within the
experimental accuracy.

The plasma temperature in the arc column was determined from the absolute intensity of the argon
countinuous specirum at A=4300 A. The continuum luminance was determined from the blackening of photo-
graphs of the arc obtained with an ISP-51 spectrograph; the radiation of the anode spot of a carbon are
with a known spectral luminance was used as standard [9]. The intensity profiles observed at the gite of
the arc were converted into radial radiation-density distributions &)(r) through a solution of the integral
Abel equation. To determine the temperature profiles T(r) from the measured &,(r) dependences, we used
the BA(T) dependence calculated from the Biberman —Norman theory with an account of the experimental
data on argon emission given in [10]. This method yielded temperature distributions in the luminous zone
of the column at arc currents in the range 5.6-180 «.

Before we could use the data from the arc measuremeuts to determine o(T), we had to determine
the validity of the assumption of a local thermodynamic equilibrium in the plasma column. As a measure
of the deviation from equilibrium we adopted the quantity T, — T,(Tg is the electron temperature, and T
) : - : g
is the temperature of the heavy particles, atoms and iouns), using [11]

T,—7T mg  (heE)?
e I4 g (4
T, = am, (AT (3.3}

e

for the calculation. Here mg is the mass of the heavy particles, e and my, are the charge and mass of the
electron, k is the Boltzmann constant, }‘e = 1/(naQ + niQi) is the mean free path of the electron, and n,
and n; are the concentrations of atoms and ions. Tﬁe cross sections Q, and Q; for collisions between

electrons and atoms and ions, respectively, were takenfrom [3]. The temperature T, was assumed equal
to that measured experimentally at the columu axis. [The calculations were carried out only for the arc

axis, where there was no temperature gradient or corresponding heat transfer by the electron gas, not
taken into account by Eq. (3.3).]

Large deviations of T, from Tg (i.e., more than 10%) were observed at arc currents I < 10q. At
higher currents (R 50q), the differeunce Te — T, Was oaly 1% of the measured T. The results of these
estimates are in agreemeunt with the experimental data of Kolesnikov [15].

The experimental temperature distribution T(r) in the column are shown in Fig. 3 for ten arc states
with currents from 11.7 to 180 a; curves 1-10 correspond to I= 11,7, 18.4, 24.9, 38.1, 60, 81.3, 99.1, 120,
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160.5, and 180 g, respectively. The regions of the T(r) curves shown by the solid lines were obtained
directely from a treatment of the optical data. The peripheral regions, shown by dashed lines, were
obtained by an interpolation between the least measured T(r) values and the wall temperature Ty, The
temperature T, was found from a thermal calculation carried out for the diaphragms with an account of
the calorimetric data,

4. The argon conductivity o(T) was determined from G and T(r) for these ten arc states (Fig. 3).
The integral conductivities G were calculated with an account of the correction for the parasitic current
i’ flowing through eash diaphragm aud partially shunting the arc column (the parasitic currents through
the diaphragms were due to the potential difference AV across the column segments spanned by the dia~-
phragms and by the nonideal insulation between diaphragms), This correction was determined from the
empirical equation

i 2 2.5.1077 § £ I2.80 “4.1)

where &4 is the diaphragm thickness in centimeters. The G values were calculated from the current I' = I~
i', where I is the current measured in the external circuit of the arc. The corrections for the parasitic
current were large at high arc currents.

The ¢ on T dependence was sought in form (1.4) for I = 2 and m = 3. The problem of determining the
parameters Ty, a,, and a3 by means of Eqs. (1.10) and (1.11) was solved in two ways. First, Egs. (1.11)
were written down and solved for T, = 1000, 2000, ..., 8000°K and with an account of the g; (k = 2.3) obtained;
each time, the sums S of the squared discrepauncies (1.8) were calculated. A rough estimate of the optimum
value T =~ 6000°K was determined from the minimum of the S(Ty) dependence obtained (Fig.4). Then a
more detailed optimization of the solution was carried out over the T, range 5500-~6500°K at a step of AT, =
100°K. As a result, the optimum parameters T, = 5900°K, a, = 2.66+10-8 mho/cm(°K)2, and a3 = — 0.188,107°
mho/cm(°K)® were found.

In the same manner, the dependence of ¢ on T for argon for T £ max T(0) ~ 13,500°K at atmospheric
pressure was determined to be

0 (T < 5900° K)

T =~ f
) |2.66- 106 (T — 5900)2 — 0.188-407° (7 — 5900)3 (5900 < T £ 13 500° K) (4.2)

s (

Curve 1 in Fig. 5 shows the o(T) dependence calculated from this equation. The region of the curve shown
by the solid line corresponds to the column temperatures found in the optical measurements; the region
shown by the dashed line corresponds to temperatures found by interpolation of the T(r) curves at the
channel periphery (Fig. 3). The conductivity ¢ increases from about 12 to 71 mho/cm for the measured
range T ~ §200 —13,500°K.

Several special calculations were carried out to analyze and evaluate the accuracy with which the
o(T) dependence was determined. Figure 6 shows the current distribution over the column cross section:

r

10y =28 \s [T ()] rdr “.3)

0

calculated using Ed. (4.2) and the experimental E, T(r), and i' values for five are states at currents I= 184,
38.1, 81.3, 120, 180a (curves 1-5, respectively). It follows from these calculations that the central regions
of the column, where the T(r) values were obtained directly from their optical measurements, make the
primary contribution to the arec curreunt. On the average, about 15% of the total current corresponds to the
peripheral zones, where the temperatures were found by interpolation. In the same manner, the errors
associated with the interpolation do not cause significant errors in the o determination over the temperature
range studied.

This was confirmed by other calculations: the ¢(T) values obtained by a treatment of the same initial
data, but with a different (clearly implausible) imterpolation of the T(r) curves at the periphery, differ from
(¢.2) by a few percent (for T =~ 8200 — 13,500°K). When the maximum errors in the measurement of I, E,
and T(r) are taken into account, the resultant error in the o(T) determination is, according fo numerical
estimates, about + 15% (an average for the range T = 8200 — 13,500°K).
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The reliability of the ¢(T) dependence determined was checked indirectly through comparison of the
calculated arc currents:

R
I,= Z:cES [T (r)]rdr
0

with the measured I. This comparison was carried out for five d = 5 min arc states which were studied
but not used for the o determination and for six states of analogous argon arcs with channel diameters d of
6 and 8 mm, studied in [12]; the results of these calculations are shown in Table 2. The calculated and
measured currents agree within a few percent. Since the total error in the measurement of the parameters
I, E, and T(r) may reach a few percent, this agreement between Ip and I must be acknowledged to be satis-
factory.

In Fig. 5, the o(T) dependence found is compared with theoretical and experimental data available on
the argon conductivity, The theoretical o(T) dependence [12, 3] is shown by curve 2. In the range TZ
11,000°K, the experimental curve (1) and theoretical curve (2) essentially coincide. For T 3 11,000°K, the
theoretical curve is much steeper. Its greatest deviation from experimental curve (1) (at T = 13,500°K) is
about + 20%, which is not much greater than the experimental error. Curve 3 shows the experimental o(T)
dependence found in [13] from argon-arc measurements by the method described in [4]. This dependence
lies about 6-11% below curve 1, lying essentially within the error of the o(T) determination in this study.
Tigure 5 also shows the results of shock~tube measurements of o (circles), obtained in [14]; they are in
satisfactory agreement with curve 1. The deviation of the theoretical dependence (2) from the experimental
dependence in the range T & 11,000°K is apparently due to the use in [12] of ion cross sections Q; slightly
on the low side [3]. '

These calculations and comparisons show that the o(T) dependence for argon has been determined
quite reliably. The most convincing evidence of this comes from the good agreement between the cur-
rents Iy and I for markedly different states of independently studied arcs (Table 2) and the satisfactory
agreement between results obtained by independent methods with different plasma sources (in this study
and in [14]). All this implies that this method of determining plasma conductivity in quite reliable and
may be recommended for use in those cases in which the plasma conductivity has not been studied throughly.

In conclusion the authors thank Ya. M. Buzhdan for consultation in the writing of the computer program,
and N. A. Rubtsov for interest in the study and valuable advice.
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